
The Many Meanings of “Shader”

Nathan Reed
Blog Stuff I’ve Made Talks About Me

A Programmer’s Introduction to Unicode
March 3, 2017 · Coding · 20 Comments

Ｕｎｉｃｏｄｅ! 🅤🅝🅘🅒🅞🅓🅔‽ 🇺🇳🇮🇨🇴🇩🇪! 😄 The very name strikes fear and
awe into the hearts of programmers worldwide. We all know we ought to
“support Unicode” in our software (whatever that means—like using wchar_t for
all the strings, right?). But Unicode can be abstruse, and diving into the
thousand-page Unicode Standard plus its dozens of supplementary annexes,
reports, and notes can be more than a little intimidating. I don’t blame
programmers for still finding the whole thing mysterious, even 30 years after
Unicode’s inception.

A few months ago, I got interested in Unicode and decided to spend some time
learning more about it in detail. In this article, I’ll give an introduction to it from a
programmer’s point of view.

I’m going to focus on the character set and what’s involved in working with
strings and files of Unicode text. However, in this article I’m not going to talk
about fonts, text layout/shaping/rendering, or localization in detail—those are
separate issues, beyond my scope (and knowledge) here.

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

1 sur 15 22/04/2017 15:01

Contents
Diversity and Inherent Complexity
The Unicode Codespace

Codespace Allocation
Scripts
Usage Frequency

Encodings
UTF-8
UTF-16

Combining Marks
Canonical Equivalence
Normalization Forms
Grapheme Clusters

And More…

Diversity and Inherent Complexity
As soon as you start to study Unicode, it becomes clear that it represents a large
jump in complexity over character sets like ASCII that you may be more familiar
with. It’s not just that Unicode contains a much larger number of characters,
although that’s part of it. Unicode also has a great deal of internal structure,
features, and special cases, making it much more than what one might expect a
mere “character set” to be. We’ll see some of that later in this article.

When confronting all this complexity, especially as an engineer, it’s hard not to
find oneself asking, “Why do we need all this? Is this really necessary? Couldn’t it
be simplified?”

However, Unicode aims to faithfully represent the entire world’s writing systems.
The Unicode Consortium’s stated goal is “enabling people around the world to
use computers in any language”. And as you might imagine, the diversity of
written languages is immense! To date, Unicode supports 135 different scripts,
covering some 1100 languages, and there’s still a long tail of over 100
unsupported scripts, both modern and historical, which people are still working to
add.

Given this enormous diversity, it’s inevitable that representing it is a complicated
project. Unicode embraces that diversity, and accepts the complexity inherent in
its mission to include all human writing systems. It doesn’t make a lot of
trade-offs in the name of simplification, and it makes exceptions to its own rules
where necessary to further its mission.

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

2 sur 15 22/04/2017 15:01

Moreover, Unicode is committed not just to supporting texts in any single
language, but also to letting multiple languages coexist within one text—which
introduces even more complexity.

Most programming languages have libraries available to handle the gory
low-level details of text manipulation, but as a programmer, you’ll still need to
know about certain Unicode features in order to know when and how to apply
them. It may take some time to wrap your head around it all, but don’t be
discouraged—think about the billions of people for whom your software will be
more accessible through supporting text in their language. Embrace the
complexity!

The Unicode Codespace
Let’s start with some general orientation. The basic elements of Unicode—its
“characters”, although that term isn’t quite right—are called code points. Code
points are identified by number, customarily written in hexadecimal with the
prefix “U+”, such as U+0041 “A” ����� ������� ������ � or U+03B8 “θ” �����
����� ������ �����. Each code point also has a short name, and quite a few
other properties, specified in the Unicode Character Database.

The set of all possible code points is called the codespace. The Unicode
codespace consists of 1,114,112 code points. However, only 128,237 of
them—about 12% of the codespace—are actually assigned, to date. There’s plenty
of room for growth! Unicode also reserves an additional 137,468 code points as
“private use” areas, which have no standardized meaning and are available for
individual applications to define for their own purposes.

Codespace Allocation
To get a feel for how the codespace is laid out, it’s helpful to visualize it. Below is
a map of the entire codespace, with one pixel per code point. It’s arranged in tiles
for visual coherence; each small square is 16×16 = 256 code points, and each
large square is a “plane” of 65,536 code points. There are 17 planes altogether.

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

3 sur 15 22/04/2017 15:01

White represents unassigned space. Blue is assigned code points, green is
private-use areas, and the small red area is surrogates (more about those later).
As you can see, the assigned code points are distributed somewhat sparsely, but
concentrated in the first three planes.

Plane 0 is also known as the “Basic Multilingual Plane”, or BMP. The BMP
contains essentially all the characters needed for modern text in any script,
including Latin, Cyrillic, Greek, Han (Chinese), Japanese, Korean, Arabic, Hebrew,
Devanagari (Indian), and many more.

(In the past, the codespace was just the BMP and no more—Unicode was
originally conceived as a straightforward 16-bit encoding, with only 65,536 code
points. It was expanded to its current size in 1996. However, the vast majority of
code points in modern text belong to the BMP.)

Plane 1 contains historical scripts, such as Sumerian cuneiform and Egyptian
hieroglyphs, as well as emoji and various other symbols. Plane 2 contains a large

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

4 sur 15 22/04/2017 15:01

block of less-common and historical Han characters. The remaining planes are
empty, except for a small number of rarely-used formatting characters in Plane
14; planes 15–16 are reserved entirely for private use.

Scripts
Let’s zoom in on the first three planes, since that’s where the action is:

This map color-codes the 135 different scripts in Unicode. You can see how Han
() and Korean () take up most of the range of the BMP (the left large square).
By contrast, all of the European, Middle Eastern, and South Asian scripts fit into
the first row of the BMP in this diagram.

Many areas of the codespace are adapted or copied from earlier encodings. For
example, the first 128 code points of Unicode are just a copy of ASCII. This has
clear benefits for compatibility—it’s easy to losslessly convert texts from smaller
encodings into Unicode (and the other direction too, as long as no characters
outside the smaller encoding are used).

Usage Frequency
One more interesting way to visualize the codespace is to look at the distribution
of usage—in other words, how often each code point is actually used in
real-world texts. Below is a heat map of planes 0–2 based on a large sample of
text from Wikipedia and Twitter (all languages). Frequency increases from black
(never seen) through red and yellow to white.

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

5 sur 15 22/04/2017 15:01

You can see that the vast majority of this text sample lies in the BMP, with only
scattered usage of code points from planes 1–2. The biggest exception is emoji,
which show up here as the several bright squares in the bottom row of plane 1.

Encodings
We’ve seen that Unicode code points are abstractly identified by their index in the
codespace, ranging from U+0000 to U+10FFFF. But how do code points get
represented as bytes, in memory or in a file?

The most convenient, computer-friendliest (and programmer-friendliest) thing to
do would be to just store the code point index as a 32-bit integer. This works, but
it consumes 4 bytes per code point, which is sort of a lot. Using 32-bit ints for
Unicode will cost you a bunch of extra storage, memory, and performance in
bandwidth-bound scenarios, if you work with a lot of text.

Consequently, there are several more-compact encodings for Unicode. The 32-bit
integer encoding is officially called UTF-32 (UTF = “Unicode Transformation
Format”), but it’s rarely used for storage. At most, it comes up sometimes as a
temporary internal representation, for examining or operating on the code points
in a string.

Much more commonly, you’ll see Unicode text encoded as either UTF-8 or
UTF-16. These are both variable-length encodings, made up of 8-bit or 16-bit
units, respectively. In these schemes, code points with smaller index values take
up fewer bytes, which saves a lot of memory for typical texts. The trade-off is
that processing UTF-8/16 texts is more programmatically involved, and likely
slower.

UTF-8
In UTF-8, each code point is stored using 1 to 4 bytes, based on its index value.

UTF-8 uses a system of binary prefixes, in which the high bits of each byte mark
whether it’s a single byte, the beginning of a multi-byte sequence, or a
continuation byte; the remaining bits, concatenated, give the code point index.
This table shows how it works:

UTF-8 (binary) Code point (binary) Range

0xxxxxxx xxxxxxx U+0000–

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

6 sur 15 22/04/2017 15:01

UTF-8 (binary) Code point (binary) Range

U+007F

110xxxxx 10yyyyyy xxxxxyyyyyy
U+0080–
U+07FF

1110xxxx 10yyyyyy
10zzzzzz

xxxxyyyyyyzzzzzz U+0800–U+FFFF

11110xxx 10yyyyyy
10zzzzzz 10wwwwww

xxxyyyyyyzzzzzzwwwwww
U+10000–
U+10FFFF

A handy property of UTF-8 is that code points below 128 (ASCII characters) are
encoded as single bytes, and all non-ASCII code points are encoded using
sequences of bytes 128–255. This has a couple of nice consequences. First, any
strings or files out there that are already in ASCII can also be interpreted as
UTF-8 without any conversion. Second, lots of widely-used string programming
idioms—such as null termination, or delimiters (newlines, tabs, commas, slashes,
etc.)—will just work on UTF-8 strings. ASCII bytes never occur inside the
encoding of non-ASCII code points, so searching byte-wise for a null terminator
or a delimiter will do the right thing.

Thanks to this convenience, it’s relatively simple to extend legacy ASCII programs
and APIs to handle UTF-8 strings. UTF-8 is very widely used in the Unix/Linux and
Web worlds, and many programmers argue UTF-8 should be the default encoding
everywhere.

However, UTF-8 isn’t a drop-in replacement for ASCII strings in all respects. For
instance, code that iterates over the “characters” in a string will need to decode
UTF-8 and iterate over code points (or maybe grapheme clusters—more about
those later), not bytes. When you measure the “length” of a string, you’ll need to
think about whether you want the length in bytes, the length in code points, the
width of the text when rendered, or something else.

UTF-16
The other encoding that you’re likely to encounter is UTF-16. It uses 16-bit words,
with each code point stored as either 1 or 2 words.

Like UTF-8, we can express the UTF-16 encoding rules in the form of binary
prefixes:

UTF-16 (binary) Code point (binary) Range

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

7 sur 15 22/04/2017 15:01

UTF-16 (binary) Code point (binary) Range

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
U+0000–
U+FFFF

110110xxxxxxxxxx
110111yyyyyyyyyy

xxxxxxxxxxyyyyyyyyyy +
0x10000

U+10000–
U+10FFFF

A more common way that people talk about UTF-16 encoding, though, is in terms
of code points called “surrogates”. All the code points in the range U+D800–
U+DFFF—or in other words, the code points that match the binary prefixes
110110 and 110111 in the table above—are reserved specifically for UTF-16
encoding, and don’t represent any valid characters on their own. They’re only
meant to occur in the 2-word encoding pattern above, which is called a
“surrogate pair”. Surrogate code points are illegal in any other context! They’re
not allowed in UTF-8 or UTF-32 at all.

Historically, UTF-16 is a descendant of the original, pre-1996 versions of Unicode,
in which there were only 65,536 code points. The original intention was that there
would be no different “encodings”; Unicode was supposed to be a
straightforward 16-bit character set. Later, the codespace was expanded to make
room for a long tail of less-common (but still important) Han characters, which
the Unicode designers didn’t originally plan for. Surrogates were then introduced,
as—to put it bluntly—a kludge, allowing 16-bit encodings to access the new code
points.

Today, Javascript uses UTF-16 as its standard string representation: if you ask
for the length of a string, or iterate over it, etc., the result will be in UTF-16 words,
with any code points outside the BMP expressed as surrogate pairs. UTF-16 is
also used by the Microsoft Win32 APIs; though Win32 supports either 8-bit or
16-bit strings, the 8-bit version unaccountably still doesn’t support UTF-8—only
legacy code-page encodings, like ANSI. This leaves UTF-16 as the only way to get
proper Unicode support in Windows.

By the way, UTF-16’s words can be stored either little-endian or big-endian.
Unicode has no opinion on that issue, though it does encourage the convention
of putting U+FEFF ���� ����� ��-����� ����� at the top of a UTF-16 file as a
byte-order mark, to disambiguate the endianness. (If the file doesn’t match the
system’s endianness, the BOM will be decoded as U+FFFE, which isn’t a valid
code point.)

Combining Marks
In the story so far, we’ve been focusing on code points. But in Unicode, a

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

8 sur 15 22/04/2017 15:01

“character” can be more complicated than just an individual code point!

Unicode includes a system for dynamically composing characters, by combining
multiple code points together. This is used in various ways to gain flexibility
without causing a huge combinatorial explosion in the number of code points.

In European languages, for example, this shows up in the application of diacritics
to letters. Unicode supports a wide range of diacritics, including acute and grave
accents, umlauts, cedillas, and many more. All these diacritics can be applied to
any letter of any alphabet—and in fact, multiple diacritics can be used on a single
letter.

If Unicode tried to assign a distinct code point to every possible combination of
letter and diacritics, things would rapidly get out of hand. Instead, the dynamic
composition system enables you to construct the character you want, by starting
with a base code point (the letter) and appending additional code points, called
“combining marks”, to specify the diacritics. When a text renderer sees a
sequence like this in a string, it automatically stacks the diacritics over or under
the base letter to create a composed character.

For example, the accented character “Á” can be expressed as a string of two
code points: U+0041 “A” ����� ������� ������ � plus U+0301 “◌́” ���������
����� ������. This string automatically gets rendered as a single character: “Á”.

Now, Unicode does also include many “precomposed” code points, each
representing a letter with some combination of diacritics already applied, such as
U+00C1 “Á” ����� ������� ������ � ���� ����� or U+1EC7 “ệ” ����� �����
������ � ���� ���������� ��� ��� �����. I suspect these are mostly inherited
from older encodings that were assimilated into Unicode, and kept around for
compatibility. In practice, there are precomposed code points for most of the
common letter-with-diacritic combinations in European-script languages, so they
don’t use dynamic composition that much in typical text.

Still, the system of combining marks does allow for an arbitrary number of
diacritics to be stacked on any base character. The reductio-ad-absurdum of this
is Zalgo text, which works by ͖͟ͅr͞aṋ ̫̠̖͈̗

d͖̻̹óm̪͙͕̗̝ļ ͇̰͓
̳̫y͓̥̟͍
́ ̕s̫t̫ ̱͕̗̰̼̘͜a̼ ̩͖͇̠͈̣͝c̙ ͍k̖ ̱̹͍

͘i̢n̨ ̺̝͇͇̟
͙ģ ̫̮͎̻ ̟
ͅ ̕n̼ ̺͈͞u̮͙m̺ ̭̟̗

͞e̞ ͓̰̤͓̫
r̵o̖ṷs҉̪ ͍̭̬̝̤

̮͉̝̞̗̟
͠d̴̟ ̜̱͕͚i͇ ̫̼̯̭̜
͡ḁ͙̻̼c̲̲̹r̨ ̠̹̣̰̦

i̱t̤ ̻ ̤͍͙̘̕i̵̜ ̭̤̱͎
c̵s ͘o ̱̲͈ ̙͖͇̲͢n͘ ̜ ͈e̬̲̠ ̩ac͕̺̠͉h̷̪

̺̣͖̱ḻ ̫̬̝̹
ḙ ̙̺͙̭͓̲t̞ ̞͇̲͉͍t̷͔̪͉̲̻̠͙e̦ ̻ ͈͉͇

r͇ ̭̭̬
͖,̖́ ̜͙͓̣̭s̘ ̘͈o̱ ̰̤̲ͅ ̛̬̜̙t̼ ̦͕̱̹͕̥h̳̲͈͝ͅa̦t̻̲ ̻ ̟̭̦̖

t̛̰ ̩h̠͕̳̝̫͕e͈ ̤̘͖̞͘y҉̝͙ ̷͉͔̰̠o̞ ̰v͈ ͈̳̘͜er̶f̰ ͈͔ḻ͕̘̫̺̲o̲̭͙͠ͅw̱̳̺ ͜t̸h͇ ̭͕̳͍e̖ ̯̟̠
͍̞̜͔̩̪͜ļ ͎̪̲͚i̝̲̹ ̙̩̹
n̨ ̦̩̖

ḙ ̼̲̼͢ͅ ̬͝s̼ ͚̘̞
͝p͙̘̻a̙c҉͉ ̜̤͈̯̖

i̥͡n̦ ̠̱͟g̸̗̻ ̦̭̮̟
ͅ ̳̪̠͖̳̯̕a̫͜n͝d͡ ̣ ̦̙ͅc̪ ̗r̴͙̮̦̹̳e͇ ͚̞͔̹̫͟a̙ ̺̙ț͔͎̘̹e̥ͅ ̩͍ a͖̪̜̮͙̹n̢͉ ̝ ͇͉͓̦̼

́a̳͖̪̤̱p̖͔͔̟͇͎͠p̱ ͍̺ę̲͎ ͈̰̲̤̫a̯͜r̨ ̮̫̣̘
a̩ ̯͖n̹ ̦̰͎̣̞̞

c̨ ̦̱͔͎͍͖e̬ ͓͘ ̤̰̩͙̤̬͙o̵̼̻ ̬̻ ͇̮̪
f̴

̡̙̭͓͖̪̤“̸͙̠̼c̳̗͜o̼͙͔̮r̞ ̫̺̞̥̬
ru̺̻ ̯͉̭̻ ̯

p̰ ̥͓̣̫̙̤
͢t̳͍̳̖ͅi̶͈ ̝͙̼̙̹o̡͔n̙ ̺̹̖̩

͝ͅ”̨ ̗͖͚̩.̯ ͓

A few other places where dynamic character composition shows up in Unicode:

Vowel-pointing notation in Arabic and Hebrew. In these languages,
words are normally spelled with some of their vowels left out. They
then have diacritic notation to indicate the vowels (used in dictionaries,
language-teaching materials, children’s books, and such). These

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

9 sur 15 22/04/2017 15:01

diacritics are expressed with combining marks.

A Hebrew example, with niqqud: ישָׁוֹדלשְִׁכתַּּיִקֶטֶב, הֵניִעַהֵזיִזדַלתְּיִאֶת

Normal writing (no niqqud): ישודלשכתיקטב, הניעהזיזדלתיאת

Devanagari, the script used to write Hindi, Sanskrit, and many other
South Asian languages, expresses certain vowels as combining marks
attached to consonant letters. For example, “ह” + “ि◌” = “िह” (“h” + “i” =
“hi”).
Korean characters stand for syllables, but they are composed of letters
called jamo that stand for the vowels and consonants in the syllable.
While there are code points for precomposed Korean syllables, it’s also
possible to dynamically compose them by concatenating their jamo.
For example, “ᄒ” + “ᅡ” + “ᆫ” = “한” (“h” + “a” + “n” = “han”).

Canonical Equivalence
In Unicode, precomposed characters exist alongside the dynamic composition
system. A consequence of this is that there are multiple ways to express “the
same” string—different sequences of code points that result in the same
user-perceived characters. For example, as we saw earlier, we can express the
character “Á” either as the single code point U+00C1, or as the string of two code
points U+0041 U+0301.

Another source of ambiguity is the ordering of multiple diacritics in a single
character. Diacritic order matters visually when two diacritics apply to the same
side of the base character, e.g. both above: “ǡ” (dot, then macron) is different
from “ā”̇ (macron, then dot). However, when diacritics apply to different sides of
the character, e.g. one above and one below, then the order doesn’t affect
rendering. Moreover, a character with multiple diacritics might have one of the
diacritics precomposed and others expressed as combining marks.

For example, the Vietnamese letter “ệ” can be expressed in five different ways:

Fully precomposed: U+1EC7 “ệ”
Partially precomposed: U+1EB9 “ẹ” + U+0302 “◌̂”
Partially precomposed: U+00EA “ê” + U+0323 “◌̣”
Fully decomposed: U+0065 “e” + U+0323 “◌̣” + U+0302 “◌̂”
Fully decomposed: U+0065 “e” + U+0302 “◌̂” + U+0323 “◌̣”

Unicode refers to set of strings like this as “canonically equivalent”. Canonically
equivalent strings are supposed to be treated as identical for purposes of
searching, sorting, rendering, text selection, and so on. This has implications for

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

10 sur 15 22/04/2017 15:01

how you implement operations on text. For example, if an app has a “find in file”
operation and the user searches for “ệ”, it should, by default, find occurrences of
any of the five versions of “ệ” above!

Normalization Forms
To address the problem of “how to handle canonically equivalent strings”,
Unicode defines several normalization forms: ways of converting strings into a
canonical form so that they can be compared code-point-by-code-point (or
byte-by-byte).

The “NFD” normalization form fully decomposes every character down to its
component base and combining marks, taking apart any precomposed code
points in the string. It also sorts the combining marks in each character
according to their rendered position, so e.g. diacritics that go below the character
come before the ones that go above the character. (It doesn’t reorder diacritics in
the same rendered position, since their order matters visually, as previously
mentioned.)

The “NFC” form, conversely, puts things back together into precomposed code
points as much as possible. If an unusual combination of diacritics is called for,
there may not be any precomposed code point for it, in which case NFC still
precomposes what it can and leaves any remaining combining marks in place
(again ordered by rendered position, as in NFD).

There are also forms called NFKD and NFKC. The “K” here refers to compatibility
decompositions, which cover characters that are “similar” in some sense but not
visually identical. However, I’m not going to cover that here.

Grapheme Clusters
As we’ve seen, Unicode contains various cases where a thing that a user thinks
of as a single “character” might actually be made up of multiple code points
under the hood. Unicode formalizes this using the notion of a grapheme cluster: a
string of one or more code points that constitute a single “user-perceived
character”.

UAX #29 defines the rules for what, precisely, qualifies as a grapheme cluster. It’s
approximately “a base code point followed by any number of combining marks”,
but the actual definition is a bit more complicated; it accounts for things like
Korean jamo, and emoji ZWJ sequences.

The main thing grapheme clusters are used for is text editing: they’re often the
most sensible unit for cursor placement and text selection boundaries. Using

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

11 sur 15 22/04/2017 15:01

The Many Meanings of “Shader”

grapheme clusters for these purposes ensures that you can’t accidentally chop
off some diacritics when you copy-and-paste text, that left/right arrow keys
always move the cursor by one visible character, and so on.

Another place where grapheme clusters are useful is in enforcing a string length
limit—say, on a database field. While the true, underlying limit might be
something like the byte length of the string in UTF-8, you wouldn’t want to
enforce that by just truncating bytes. At a minimum, you’d want to “round down”
to the nearest code point boundary; but even better, round down to the nearest
grapheme cluster boundary. Otherwise, you might be corrupting the last character
by cutting off a diacritic, or interrupting a jamo sequence or ZWJ sequence.

And More…
There’s much more that could be said about Unicode from a programmer’s
perspective! I haven’t gotten into such fun topics as case mapping, collation,
compatibility decompositions and confusables, Unicode-aware regexes, or
bidirectional text. Nor have I said anything yet about implementation issues—how
to efficiently store and look-up data about the sparsely-assigned code points, or
how to optimize UTF-8 decoding, string comparison, or NFC normalization.
Perhaps I’ll return to some of those things in future posts.

Unicode is a fascinating and complex system. It has a many-to-one mapping
between bytes and code points, and on top of that a many-to-one (or, under some
circumstances, many-to-many) mapping between code points and “characters”. It
has oddball special cases in every corner. But no one ever claimed that
representing all written languages was going to be easy, and it’s clear that we’re
never going back to the bad old days of a patchwork of incompatible encodings.

Further reading:

The Unicode Standard
UTF-8 Everywhere Manifesto
Dark corners of Unicode by Eevee
ICU (International Components for Unicode)—C/C++/Java libraries
implementing many Unicode algorithms and related things
Python 3 Unicode Howto
Google Noto Fonts—set of fonts intended to cover all assigned code
points

Tweet

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

12 sur 15 22/04/2017 15:01

20 Comments on “A Programmer’s Introduction to
Unicode”

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

13 sur 15 22/04/2017 15:01

20 Comments reedbeta Login1

Share⤤ Sort by Oldest

Join the discussion…

• Reply •

sdreyesg • 2 months ago

Man, this was a great post. the explanation of canonical value, the heat map

and the unicode codespace chart were my favorite.

7△ ▽

• Reply •

Corvus • 2 months ago

I believe «U+0041 “a” latin capital letter a» should read «U+0041 “A” latin

capital letter A».

1△ ▽

• Reply •

Nathan Reed • 2 months agoAuthor > Corvus

Thanks; fixed.

1△ ▽

• Reply •

Pierre Clouthier • 2 months ago

I've been working with Unicode for years and I've learned many things from this

post. Thanks!

3△ ▽

• Reply •

Aron • 2 months ago

Really well written and comprehensive post! Thank you so much! Finally I

understood Normalization on unicode! haha

1△ ▽

• Reply •

Kauê Rodrigues • 2 months ago

Really informative and well written, thank you.

1△ ▽

• Reply •

Miodrag Milić • 2 months ago

Thanks a lot... now stuff finally makes sense.

△ ▽

Jeff Davies • 2 months ago

 Recommend 8

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

14 sur 15 22/04/2017 15:01

Subscribe
 Feedly

 RSS

Recent Posts
A Programmer’s Introduction to Unicode
The Many Meanings of “Shader”
Tessellation Modes Quick Reference
little-py-site
Star Trek: TNG Theme Reorchestration
EEVEE.WAD Doom Map
All Posts

Categories
Graphics (20)
Coding (18)
Math (12)
GPU (11)
Physics (6)
Eye Candy (4)

© 2007–2017 by Nathan Reed. Licensed CC-BY-4.0.

A Programmer’s Introduction to Unicode – Natha... http://reedbeta.com/blog/programmers-intro-to-u...

15 sur 15 22/04/2017 15:01

